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We present the results from numerical solutions of problems in the optimum control of heat conduction 

in the case of pulsed heating with highly concentrated sources of heat. 

INTRODUCTION 

The problems of  optimum control (POC) involved two mathematical models (MM): the MM of  the direct problem 

(DC) and the MM of the POC itself. The MM of the DC is needed, since without it we cannot formulate the POC, nor 
can we examine those terms in the MM of the DC which make it possible to establish the limitations and controls. When 

we have at hand the MM of the DC for heat conduction (H), it is easy to formulate the POCH, since the latter is easily 
reduced to a "standard" optimization problem [1-4]. The MM of the DC can be written in implicit (MM of the Ist kind) 

and in explicit (MM of the l ind kind) form [5]. Selection of  the method for the solution of  the POCH depends significantly 
on the form of the MM for the DC. Indirect methods for the solution of POC can be applied easily, when we have obtained 

the explicit forms of  the MM for the DC, i.e., analytic relationships between temperature and control (the conditions 
of unique definition). However, for complex implicit MM, even in the case of  ordinary heat conduction, it is not so 

simple to come up with an analytical solution, and the numerical solutions are therefore processed in the form of nomograms 
or in the form of explicit analytical expressions. We then use any optimization algorithms of  which in [1] alone we find 

about 300. We indicated our preference for the methods of zeroth order, since we were interested in the absolute temperatures 
and their discrepancies. Solutions of the DC and POC were obtained by means of  all existing types of calculators and 

computers (CC): analog, universal, digital, and hybrid. 
Physical and Mathematical Formulation of the Problem. The basic equations for the process of  heat conduction 

and the expressions for boundary conditions of the Ist-IVth kind can be found in numerous monographs and texts dealing 
with heat exchange. We would stress that all of the quantities to which the conditions of uniqueness in the MM of the 

DCH apply are controls within the MM of the POCH. Specific controls and limitations are easily determined after specification 

of the conditions of uniqueness and selection of the form of the designated special-purpose function. 

Figure 1 shows two canonical shapes: a disk and a plate. The areas subjected to pulsed heating are indicated by 

cross-hatching. The POC was solved on the basis of numerical solutions (explicit MM). In formal terms, all of  the controls 

of our POC serve as arguments in the conditions of unique definition for the original DC. 
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Fig. 1. Structural diagrams of the test specimens. 
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Items in the shape of disks or plates are heated by pulsed surface or internal flows of  heat. The laws governing 

the change in the power of  the surface qs(xl, r) (i = 1, 2) or internal qv(xi, f) (i = 1, 2, 3) heat flows were set so as to 

make provision for the physical nature of  the heating source. Over time the power is transmitted in the form of rectangular 

pulses exhibiting such characteristics as qs, qv, rx, r9., the number  of  pulses, the number  of  pulse trains, etc. In addition, 

the following quantities contained within the uniqueness conditions also served as controls, namely: xi, i = 1, 2, 3, the 

shape of the body for  any coordinate system in the cases which we have presented here varied r 1, rz, h 1, hz, h s, h 4 (see 
Fig. 1 ). For multilayered anisotropic shapes we were able to change the number, thickness, and thermophysical characteristics 

of the individual layers. The purpose of the POCH series was to find such optimum shapes and thermophysical characteristics 

of the shapes where the maximum temperature Tm~ x would be lower than the temperature specified throughout the duration 

of the entire process. One class of  such POCH may be referred to as a geometric POC class. In these POCH we found 

controls with which reduction became possible, i.e., transition from three- and two-dimensional problems to one-dimensional 

problems. The problem is formulated as follows: with which controls can the temperature field obtained in the solution 

of the three-  or two-dimensional  problem be equivalent (for any specified discrepancy) to the field of  the one-dimensional 

problem? In these problems we have revealed features which go under the heading of the "action" of  the principle of 

local effect,  i.e., the principle of  relaxation in space and time for local changes in controls (conditions of  uniqueness in 

DCH). 

Thermal resistances to heat conduction R x = e/()~S), to heat capacity R r = 6r/(cvV), to external and internal exchanges 

of heat and to sources R~ = 1/(c~S), Rqs = (Uma x - Ui)K/(qsS), Rqv = ( U m a  x - Wi)K/(clvV), to convection R u = Ax/(ucvV),  
these may all serve as controls. The numerical values of  these parameters and the values of  their relationships are criteria 

for estimates of  the thermal regimes, the thermal patterns for the test objects (and for  heat exchangers in general). Some 

of these, for example Rx/Ra  = Bi = a/(As have long since been employed successfully in thermal engineering. For POCH 

these criteria are control ratios. 

We have to solve the POCH and find such ratios of thermal resistances as the controls which alter the class of problems 

and the subsystem MM of the DC. We can formulate the POCH as follows: find such a value for  the criterion as would 

allow us to "deform" the item: to make the changeover f rom a cylindrical round shell to a plate. Such a criterion is known: 

h l / r  1 < 0.1, but in the POCH we have minimization Tma x p -Tma x a < e, i.e., the value of e is specified and we solve the 

problem of minimizing the difference Tnaax p - Tma x a" The ratio h l / r  1 serves as the control. Thus, not only uniqueness 

conditions can serve as controls, but their combinations and ratios. In our case, these ratios are used to subject the items 
to "deformation,"  i.e., to simplifications of  the thermal pattern and to simplifications of  the MM DCH hierarchy that 

corresponds to this pattern. 

Let us list some of the controls and limitations which we have investigated. Fundamentally,  the aims and limitations 

in the POC are limitations, although the purposeful  aims are usually isolated into an individual group of conditions. 

The listed controls and limitations are as follows: Tma x a = 1000-1700~ ATsa is the allowable difference between 

the temperature at a given point x at a given instant of time r and the integral temperature at which the deformation 

k of the product (Fig. l) does not exceed some given quantity (k = 0.5-2/~m), hi, 2 = 4-30 mm, h s = 20-40, h 4 = 20-30; 

h s, 6 = 10, h 7 = 5-10, h 8 = 5-15 mm; r 2 = 5.6 ram, r 1 = 10-12.5 mm; qv = (0.5-30)-10 6 W/mS; r 1 = 5.10-~-3.0 sec, r 2 = 5.10 - s -  
10 sec. The indicated numerals represent the range of numerical values for the controls and correspond to the periods 

P = 5.10-a-11 sec, frequencies u = 0.1-200 Hz, and the number  of  pulses f rom one to continuous operation. 

In certain regimes it is the times of the pulse trains and the separations between these trains that serve as controls. 

The number  of  pulses in the trains reached as high as 1000. The pores between the pulses and between the trains served 
as a control of  time in the cooling down by means of radiation, and with natural and forced convection. 

The difference between the maximum temperature T m a  x and the specified dangerous temperature T d a  n w a s  most 
frequently minimized, and here the controls had to be those quantities which were characteristics of  the cooling (i.e., 

qcool or Otcool , Or To, etc.). 
In principle, since the temperature depends on all of the unique conditions, all of these unique conditions are controls 

on the cooling. For example,  a change in the conditions of  heating qv or rl ,  or r2, etc., are controls on cooling just as 

qcool. The design estimator in the computational experiment  may suggest to the designer all means of cooling, and the 
designer will select the most efficient, proceeding from the control of other POC (minimum of mass, expenditure of energy, 
cost, etc.). 

In a number  of  cases the moving control is quite promising [6]. For all intents and purposes, we paid no attention 
to this control, with the exception of  several variants of  random displacement of  the local heating spot with respect to 
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Fig. 2. Change over time in the discrepancy e at 
the point (h 1 - x) = 0.2 mm for various q = const: 
1) q.10-6= 4.474; 2) 3.35; 3) 2.75; 4) 2.45; 5) 2.38; 
6) 2.3; 7) 2.23; 8) 2.18; 9) 2.13; 10) 2.075; 11) 1.9 
W/mL e, *C; r, sec. 
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Fig. 3. Discrepancy ~ as a function of time at point (h 1 - x) = 0.3 mm for  various q -- 
const: 1) q.10 -6 = 4.0; 2) 3.35; 3) 2.75; 4) 2.45; 5) 2.38; 6) 2.3; 7) 2.23; 8) 2.18; 9) 2.13; 10) 
1.9 W/m 2. 

Fig. 4. Maximum discrepancy e = T c - T v as a function of the time at points along the axis 
of  the specimen (T e has been obtained for q = qe av = 1.9.106; T v has been obtained for 
q,, = 19.106 W/m 2, r 1 -- 10 -s, P = 0.1 sec): I) (h 1 - x) -- 1.0; 2) 0.1; 3) 0.3; 4) 0.2 mm. 

the entire (possible) spots. Even these special examples of  movable heating-cooling suggest the great potentials of  such 
a control. 

The initial MM of  the DCH was nonlinear, i.e., we took into consideration the nonlinearity of  the I and II kinds 
[~(T), cv(T), qcool(T)]. For example,  the emissivity ~ as a function of T could change by a factor of  4, f rom 0.2 to 0.8. 
By controlling the roughness of  the heated surface, we can alter ~ and optimize the temperature  fields. 

The thermophysical  characteristics of  the materials were altered within the following limits: A = 1.1-395 W/(m.K), 
c v = (2.54-4.2)-106 J/(mS.K). The characteristics A and c v in their dependence on temperature within the temperature 
ranges being studied here varied, respectively, by factors of  3 and 1.5. The computational exper iment  showed that errors 
due to linearization with respect to A and c v lead to an error in T(xi, r), in our DC reaching up to 30%. Simultaneously, 
in order to underscore the need to solve nonlinear problems and combined thermomechanical  problems for  our product, 
let us note that Young's modulus E and other characteristics of  the mechanical state depend on temperature;  it is essential 
that these relationships be taken into consideration for  problems similar to ours [7]. 

It is impossible to achieve a solution for the POCH without an economical method for  the solutions of  the DCH, 
since the model temperatures T M must be utilized in all methods for the solution of POC in the minimization of  the special- 
purpose functional,  where the values of  T m figure directly or indirectly (without limitation). Let us stress that the POCH 
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are inverse problems in the most general sense of  this word. Their  solution is always associated with the inversion of 
the cause-and-e f fec t  coupling, that is incorrect f rom the physical point of  view. From the mathematical  standpoint, 
however, these inverse problems (ordinary OP and POC) are incorrect according to Adamar,  and at times correct according 
to Tikhonov. In the POC for heat conduction, in view of the wel l - founded MM and the well-developed analytical and 
numerical methods for the solution of the DC the problems of control are solved with comparat ive simplicity, and this 
applies to problems of observabili ty as well, etc. [8]. 

Results from the Solutions of Several POCH.  Particular attention has been devoted to problems related to the 
search for equivalent constant flows of heat, which at a specific depth x o in the product  would yield a temperature curve 
Tc(x o, r) (see Fig. 1) closest to the curve Tv(x 0, r), obtained in the pulsed regime. Other formulations of  the POC are 
important and also interesting f rom the standpoint of  choosing opt imum dimensions rl(2), h i (i = 1 ..... 8). In these problems 
the ultimate goal was the at tainment of  minimum maximum temperature for given concentrated heating and distributed 
cooling heat flows. Such formulations would be of interest in connection with the fact  that it would make it possible 
to ascertain specific thermal properties in the product,  associated with system properties related to phenomena of heat 
treatment. The "effect of critical thickness" [9] has been confirmed: At some (critical) thickness the maximum temperature 
increases [rather than fall (!)] with a reduction in the thickness (h 1 or h4). 

The pulsed heat-exchange regimes are characteristic of numerous processes, and mathematical  modeling of detailed 
temperature fields became an essential procedure,  not only because of the great cost involved in carrying out experiments 
under natural conditions, but also because of the impossibility in such experiments completely to evaluate the thermal 
regime. The computational experiment  becomes the only method for optimization. For example,  i f  r 1 is smaller by several 
orders of  magnitude than the time required for the measuring unit to reach a normal operating regime, the change in 
maximum temperature cannot be measured by any existing methods. 

In these and numerous similar cases we could pass judgment  as to the operational capabilities of  a design with 
respect to temperature,  stress, strain, caused by a constant q rather than by pulses of  heat flows, and the constant quantities 
result in thermal and thermomechanical  regimes which are equivalent in terms of certain indices to the original pulsed 
regimes. For example,  the thermal strains and stresses are evaluated on the basis of  the temperature fields obtained at 
constant (but equivalent) qce [10]. The authors of [11] dealt with this principle of  equivalence in the phenomenological 
theory of heat conduction with respect to making homogeneous the thermophysical  properties. The method for the 
simplification of the MM of the DC serves as one of the means of optimizing the method for the solution of the initially 
complex problems of heat conduction in general, and the problem of pulsed heating in particular. The search for the 
constant qce yielding equivalent temperature fields on the basis of  certain conditions is an opt imum control problem in 
which the specified field is obtained for the pulsed regime, while the control of  qee - const must result f rom our effort  
to find a minimum in the discrepancy in e between two T(x o, r), obtained for  the sought qee and qv of  the pulsed regime. 

Let us examine several examples of  solutions for such POC; we have enumerated the original data above. At some 
depth x o along the axis of  the disk (Fig. 1) or at the inside (unheated) surface it is necessary to obtain for qee - const 
temperatures such as exhibit  min imum difference f rom the temperatures obtained for  qv - varia. Figures 2-4 show the 
results f rom the solution of such problems. Along the axis of  ordinates throughout we have plotted e = T e - "Iv, where 
T c is the temperature obtained for q - const; T v has been obtained for q - varia, i.e., in pulsed heating. The coordinate 
of the point (h 1 - xo) changed f rom 1.0 to 0.1 mm. We can see that depending on the time and location of  x o for identical 
qv = 19"106 W/m2, rl  = 10-3, and r 2 = 0.099 sec we can find points for which e = 0. The closer qe to the value 

_ X '  %'q 
q e  av-- z . ~ ~ ,  

N T1 -I- q~2 

the t ime-averaged q, the larger max e over time (see curves 11 in Fig. 2). The data in the figures conf i rm the effect  of  
the principle of  local influence (the principle of relaxation of local perturbations in the conditions of  unique deposition 
in space and in time). When the point x o is removed f rom the heated surface and with an increase in t ime the value of 
r is reduced as the balance of the quantity of  introduced heat is conserved. The growth in errors for  q - const different 
from % av (see Figs. 2 and 3) is characteristic. These curves once again give evidence as to the uniqueness of  the solution 
for the heat-conduct ion problems and as to the possibility of  obtaining qi - const for the required instant of  time for 
a given x 0. For example,  we are interested in the point (hi - x) = 0.2 mm with an effect ive operational t ime of r = 0.05 
sec for the pulse source. We can set q - const equal to 2.125.106 W/m 2, so that era = will be -4.5~ here e = 0 for r - 
= 0.05 sec. We can take ema x = -3.5~ in which case e = 0 for r = 0.038 see, but when r -- 0.05 see it will be e = 3 K. 
We can thus f ind such q - const that for a given depth of x in the specified range of times will yield the minimum possible 

eraax- 
For each pulsed regime qv, r l ,  r2 we can find such a number  of  pulses at which q - const --* qe av. From the 

distribution of T(x, r) we can approximately recover q,,, r 1, r2, although the temperature curve, beginning f rom some 
x, fails to reflect the variability of  q on the heating surface. It may be assumed that in this case the quantity q - const 
strongly reflects the pulsing nature of  the heating regime and with some accuracy may serve as a solution of the inverse 
problem (essentially, we are dealing here with a problem of observability). 
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The curves in Figs. 2-4 provide a good picture of the laws of conservation: for  all q - const larger than qe av, 
the discrepancies in e become positive even as r ~ oo, e ~ oo. 

The data in Fig. 4 are "perplexing": curve 2 for e when (h 1 - x) -- 0. I mm behaves "incorrectly." From curves 
4, 3, and 1 we can observe the following quantitative relationship: the larger (h 1 - x), the smaller the value of e. However, 
when (h I - x) --- 0.1 with limited time emax(h 1 - x) > ema x for other (h x - x), shown in Fig. 4. With (h x - x) = 0.1 mm 
the e(r) curves behave in the same "unusual" fashion because the curve T(h 1 - 0.1, r) is considerably more "sensitive" 
to the pulse nature of the heating regime than the curves T(x, r) for  (h 1 - x) -- 0.2, 0.3, and 1.0 mm. The data in Figs. 
2-4 show that the temperatures through the depth of the heated bodies characterize the heating regime, and their values 
may be utilized to control heating. 

CONCLUSION 

Analysis of the POCH with respect to the reduction of two- and three-dimensional problems to one that is one- 
dimensional makes it possible to find such a number of pulses subsequent to which the reduction will lead to an 
impermissible growth in errors. We can demonstrate the number of pulses at which it becomes possible to achieve transition 
to calculations of one-dimensional temperature fields for  three-dimensional bodies of  complex shape. A complex shape 
is not only one that involves the shape of the body itself, but the shape of the cooling and heating surfaces as well. When 
we take into consideration the effect  of the principle of relaxing local changes in the conditions of  unique definition 
it becomes possible to optimize not only the thermal regime, but the method by which it is calculated, namely to simplify 
the original MM of the DCH, to reduce the calculation time for the specified high precision of  solution for the DC and 

POC. 

NOTATION 

x, coordinate; q, heat flux density; T, Ta, Te(v), temperature, temperature of the medium, and the temperature 
obtained when q - const (q - varia); r, r l ,  r~., time, pulse time, pause time; r 1, r 2, radii of  component parts and the heating 
spot; h i, geometric parameters of the body; R, thermal resistance; l, length; S, area; V, volume; A, thermal conductivity; 
c, specific heat capacity; 6r, Ax, intervals of time and space; a, heat-transfer coefficient; U, electrical voltage; K,  scale 
factor in calculation of thermal resistances; u, coolant velocity; Bi, Biot criterion; e, discrepancy; AT s, mean-integral 
deviation in temperatures; k, deformation; P, period; u, frequency of pulse sequence; ~, emissivity; N, number of pulses. 
Subscripts: s, surface; c, const; v, varia; p, purpose; a, allowable; dan, dangerous; cool, cooling; m, model; e, equivalent; 

min, minimum; av, average. 
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